Längd på insug

Diskussioner för erfaret folk
Lurveen
Ganska mycket laddtryck
Inlägg: 53
Blev medlem: sön dec 13, 2015 2:11 pm

Längd på insug

Inlägg av Lurveen »

Hej! Finns säkert massa trådar om detta. Men hittar ingenting som vanligt...

Blir separata spjäll i vinter.
Jag har en topp med två ventiler per cylinder. 32mm styck.
Ska varva 7000.
Hur räknar jag ut vilken storlek på tratt?
Och hur ska man tänka angående längd på röret?
Motorn i fråga är en audi 7a för den som är nyfiken.
Måste man ta med kam lyft i den beräkningen?
The
Forumsberoende
Inlägg: 5083
Blev medlem: tis jun 01, 2004 11:05 pm
Ort: Boden
Kontakt:

Re: Längd på insug

Inlägg av The »

Torbjörn.A
Har man slagit yxan i båten får man ro som fan
Baxman
För mycket laddtryck
Inlägg: 468
Blev medlem: ons dec 17, 2008 10:49 am
Ort: Norge

Re: Längd på insug

Inlägg av Baxman »

Bild
Användarvisningsbild
Jens Gustavsson
Sävar Turbo Racing
Inlägg: 21678
Blev medlem: mån sep 22, 2003 5:47 pm
Ort: Tomterna/sävar
Kontakt:

Re: Längd på insug

Inlägg av Jens Gustavsson »

man behöver en bromsbänk för att hitta rätt längd är min erfarenhet. men man kan gissa och räkna och komma i närheten förstås.
Erland Cox
Topplocks-guru
Inlägg: 6965
Blev medlem: mån okt 15, 2007 10:00 pm
Ort: Lund
Kontakt:

Re: Längd på insug

Inlägg av Erland Cox »

Baxman, insugningslängden är för andra pulsen antar jag?
Den röda kurvan, kanalarea per cc cylinder men var i kanalen?
Det står in head men inlopp eller minsta area?

Erland
Baxman
För mycket laddtryck
Inlägg: 468
Blev medlem: ons dec 17, 2008 10:49 am
Ort: Norge

Re: Längd på insug

Inlägg av Baxman »

Erland Cox, det her er kun for at amatører som jeg skal ha ett utgangspunkt å begynne fra.
Om vi tar en B230 motor og ønsker maks effekt på 7000 o/min, så gir denne oversikten følgende resultater.
Diameter innsugskanal: 37,5 mm som vi da antar må være minimum area.
For andre lesere;
579 x 1,9 = 1100.
1100 / 3,14 = 350,32
ROT(350,32) * 2 => 37,5 mm.

Lengden fra ventilstammen og ut til enden av trakten: 400 mm.

En amatør vil nok få akseptable resultater med å begynne med disse målene. :)
Erland Cox
Topplocks-guru
Inlägg: 6965
Blev medlem: mån okt 15, 2007 10:00 pm
Ort: Lund
Kontakt:

Re: Längd på insug

Inlägg av Erland Cox »

Hej! 37,5mm verkar lite lite till 7000 varv men längderna verkar ok.

Erland
Erland Cox
Topplocks-guru
Inlägg: 6965
Blev medlem: mån okt 15, 2007 10:00 pm
Ort: Lund
Kontakt:

Re: Längd på insug

Inlägg av Erland Cox »

Jag kom ihåg att jag hade sett denna och lyckades hitta den med:

Technical:

Runner length

Many customers ask for assistance to determine runner length for their manifold. Many others have a number in mind when they call because they have a baseline from a previous manifold. To help you plan your first attempt or verify your next test, I compiled the following graph. It is compiled from popular formulas, personal experience, and feedback from customers.

Bild

The above graph tends to be more aggressive than conservative. If you have a stick-shift car, it is very close. Automatics tend to need more runner length to accommodate the converter stall and recovery from wider gear changes.

To measure your intake port length, use a length of electrical solder. Straighten the solder and lay it in the port along the floor. Mark it at the valve seat and the manifold gasket face. Straighten it back out and measure between the marks. Repeat for the roof, positioning the solder next to the valve guide. The average of the two measurements is your port length. A ¼” tape measure can also be used instead of solder.

Use the same method to measure the manifold runner length, but don’t wrap the solder or tape measure around the plenum radius. Just extend it tangent to the runner wall, and measure to a straight-edge running across the top of the runners. Most engine builders use the average of the front and back walls of the runner, but some use the floor and roof. It is common to have two or more different runner lengths in a manifold. If so, use an average length for the next calculation.

Add the average runner length, average port length, and manifold gasket thickness, and you have the total intake tract length.

Example: You have an engine with a 6.25 inch average port length. You want the engine to operate between 8500 and 9500 RPM. From the graph above, you need a total intake tract length of about 10.5”. That leaves 4.25 for the runner length and gasket. With a 0.06” gasket, the average runner length should be 4.19”.



Runner taper

I quantify runner taper by comparing the cross-sectional area of the intake port (at the gasket) versus the area at the plenum opening of the runner (not including the entry fillet). This is expressed as a percentage of increase in area. I calculate the area at the intake gasket, and then I add the percentage required by the application to determine the runner entry area. Since most applications have round plenum openings, I simply convert the opening area back to the diameter of the required circle.

Obviously, the key is to know what percentage is needed for your application. Several factors seem to be important to determine this number. I can’t quantify the impact of these factors, as every engine combination is different. Camshaft events alone can severely affect how taper is tolerated. I can give you the following relative guidelines to determine where to start:

Most drag racing manifolds require between 25% and 45% increase in area. There are applications that go beyond these limits, but this is rare.

Engines that are built on production platforms tend to like about 30% increase in area. I’m referring to the typical bore/stroke/rod ratios derived from OEM engines. As bore/stroke ratios approach 1:1, the increase in area is likely to be 25% or less.

Race engine platforms with large bores and short strokes like higher percentages – 35-45%.

Short deck engines (and resulting rod/stroke ratios) tend to want more taper. The piston motion of a short rod combination will create adequate port velocity in large runners.

Stick-shift applications tolerate more taper than automatics.

Larger displacement engines like more taper than small engines of the same bore/stroke/rod proportions.

These guidelines should help you narrow down your taper requirements within a range of a few percent. The combinations are so varied, even within the same class of racing, that set numbers and fixed rules are difficult to derive. My goal is to minimize your testing iterations required to find the best performance.



Entry Fillets

Changing the fillet radius size at the entry of the runner is another way to tune a manifold. This is particularly relevant in carbureted applications. Fillet size typically varies from ¼” to ½”. If the carburetor signal is weak, a small fillet radius can help the situation because the transition from plenum velocity to runner velocity happens more quickly with a small radius. This extra “snap” can help when attempting to tune large carburetors. This can also be useful when working with larger-than-optimum size plenums. A large radius works well in injected applications and engines with carburetor rules or small plenums.

I like to see larger entry fillets, simply because they are less likely to be turbulent and they have less drag. I do build many manifolds with ¼” fillets with great success, but I pay particularly close attention to the quality of the fillets. The air speed across the fillet can be excessive, and any imperfection is likely to cause turbulence. This is why I prefer machined and polished fillets to the welded and hand-worked fillets typically used on sheet metal manifolds. To demonstrate this, look at the following CFD (computational fluid dynamics) simulation below. As with most complex engineering problems, the simulation is an over-simplified version of real-life conditions. And this, too, is a very simplified version of what happens inside a manifold, but it does confirm one particular instance when filling a cylinder. The plenum was modeled as a large, rectangular open box. The runner is a typical “tilted” runner viewed from the roof. The vacuum condition at the valve end of the runner was increased until an average air speed of 200 to 300 feet per second was achieved, similar to testing on a flow bench. You can see how the air speed along the “short” side of the runner is much higher than anywhere else. You can also see that the velocity peaks at about 500 feet per second as it flows over the entry fillet on the short side (yellow). It requires a nearly perfect shape and surface finish to prevent the air stream from separating from the wall (turbulence) at this speed.

Bild


Erland
Baxman
För mycket laddtryck
Inlägg: 468
Blev medlem: ons dec 17, 2008 10:49 am
Ort: Norge

Re: Längd på insug

Inlägg av Baxman »

Erland Cox skrev:Hej! 37,5mm verkar lite lite till 7000 varv men längderna verkar ok.

Erland
Hei.
Jeg er enig og anser dette som minimum area på minsta areaen innan svängen på gatebils motorer hvor god respons og bra dreiemoment fra lave turtall er viktigere enn maksimal effekt på 7000 o/min.

Bild
Skriv svar